A mechanism study of sound wave-trapping barriers.
نویسندگان
چکیده
The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.
منابع مشابه
Metallography Investigation of Thermal Wave Control by Magneto-Static Field
In this paper we have studied the effect of magneto-static field onpropagation of thermal wave generated in metal by pulsed laser. In fact this interactiongenerate acoustic wave in different mechanisms. However, always the commonmechanism in the interactions of laser pulse and metal is the thermo-elastic wavegeneration. Applying the suitable magneto-static field on the s...
متن کاملارائه یک مدل ریاضی ساده و اعتبار سنجی آن جهت تعیین بهترین حوزه عملکرد موانع صوتی
Background and aims Traffic noise barriers are the most important measure to control the environmental noise pollution. Diffraction from top edge of noise barriers is the most important path of indirect sound wave moves towards receiver.Therefore, most studies are focused on improvement of this kind. Methods T-shape profile barriers are one of the most successful barrier among many dif...
متن کاملSound Wave Propagation in a Multiferroic Thermo Elastic Nano Fiber Under the Influence of Surface Effect and Parametric Excitation
This study investigates that the sound wave propagation of multiferroic thermo elastic Nanofibers under the influence of surface effect and parametric excitation via Timoshenko form of beam equations. The equation of analytical model is obtained for Nanofiber through shear and rotation effect. The solution of the problem is reached through the coupled time harmonic equations in flexural directi...
متن کاملSound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length
In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...
متن کاملThe effect of the angle upper edge in shaped noise barriers with a T-shaped upper edge
Background and Objective: Efforts to improve the effectiveness of noise barriers have been made, including shape, aesthetics, form and gender. Therefore, the aim of this study was to investigate the effect of the angle upper edge in shaped noise barriers with a T-shaped upper edge. Materials and Methods: A 2D boundary element method (BEM) was used to predict the insertion loss of the tested ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 134 3 شماره
صفحات -
تاریخ انتشار 2013